[May 2. 2019] Theoretical studies of organic molecules in OLEDs: From chemical stability to the excited-state nature

by webmaster posted Apr 26, 2019
?

Shortcut

PrevPrev Article

NextNext Article

ESCClose

+ - Up Down Comment Print
Extra Form
Speaker Prof. Dongwook-kim (Kyonggi University)
Date Thu. 2 May. 2019
Time 5:00pm
Venue #331, Asan Hall, College of Science

Theoretical studies of organic molecules in OLEDs:

From chemical stability to the excited-state nature

 

Since their first invention, the performance of organic light emitting diodes (OLEDs) have tremendously been improved for last three decades. In such a long journey, theoretical and computational studies have provided fundamental insights into various optical/physical /chemical phenomena in the devices and suggested the design rules of new efficient organic semiconducting materials to improve the device performance. Among many such studies, for example, in the case of thermally activated delayed fluorescence (TADF) phenomenon, which enables a full harvest of triplet excitons with organic emitters, our recent theoretical studies have unveiled the true nature of the singlet and triplet energy difference,1-2 and the role of different excited-nature between such states in the intersystem crossing.3 In addition, the role of multiple donor or acceptor units in enhancing the intersystem crossing rate and fluorescence rate was recently addressed.4 We recently also investigated the chemical stabilities of organic semiconducting materials in a combination of electron donor and acceptor units, pertaining to the device lifetime.5-6 In this talk, I would like to briefly discuss the chemical stabilities and excited-state natures of organic semiconducting materials in OLEDs.

 

References:

1. D. Kim, J. Phys. Chem. C 2015, 119, 12690.

2. K. Lee and D. Kim, J. Phys. Chem. C 2016, 120, 28330.

3. P.K. Samanta, D. Kim, V. Coropceanu and J.-L. Bredas, J. Am. Chem. Soc. 2017, 139, 4042.

4. C. Ahn and D. Kim, submitted.

5. H. Li et. al. Chem. Mater. 2019, 31, 1507

6. D. Kim, submitted.


Articles

1 2 3 4 5 6 7 8

Designed by sketchbooks.co.kr / sketchbook5 board skin

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 Cancel

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5