Maskless Arbitrary Writing of Molecular Tunnel Junctions

Extra Form
author Hyo Jae Yoon
Homepage https://hyojaeyoon.wixsite.com/omml
journal ACS Appl. Mater. Interfaces, Article ASAP
?

Shortcut

PrevPrev Article

NextNext Article

ESCClose

+ - Up Down Comment Print

 

Since fabricating geometrically well-defined, noninvasive, and compliant electrical contacts over molecular monolayers is difficult, creating molecular-scale electronic devices that function in high yield with good reproducibility is challenging. Moreover, none of the previously reported methods to form organic–electrode contacts at the nanometer and micrometer scales have resulted in directly addressable contacts in an untethered form under ambient conditions without the use of cumbersome equipment and nanolithography. Here we show that in situ encapsulation of a liquid metal (eutectic Ga–In alloy) microelectrode, which is used for junction formation, with a convenient photocurable polymeric scaffold enables untethering of the electrode and direct writing of arbitrary arrays of high-yielding molecular junctions under ambient conditions in a maskless fashion. The formed junctions function in quantitative yields and can afford tunneling currents with high reproducibility; they also function at low temperatures and under bent. The results reported here promise a massively parallel printing technology to construct integrated circuits based on molecular junctions with soft top contacts.

 

am-2017-14347z_0007.gif

 

http://pubs.acs.org/doi/abs/10.1021/acsami.7b14347


Articles

1 2 3 4 5 6 7 8

Designed by sketchbooks.co.kr / sketchbook5 board skin

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 Cancel

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5