Enhanced Thermopower of Saturated Molecules by Noncovalent Anchor-Induced Electron Doping of Single-Layer Graphene Electrode

Extra Form
author Hyo Jae Yoon
Homepage https://hyojaeyoon.wixsite.com/omml
journal Advanced Materials
?

Shortcut

PrevPrev Article

NextNext Article

ESCClose

+ - Up Down Comment Print

Enhancing thermopower is a key goal in organic and molecular thermoelectrics. Herein, it is shown that introducing noncovalent contact with a single-layer graphene (SLG) electrode improves the thermopower of saturated molecules as compared to the traditional gold–thiolate covalent contact. Thermoelectric junction measurements with a liquid-metal technique reveal that the value of Seebeck coefficient in large-area junctions based on n-alkylamine self-assembled monolayers (SAMs) on SLG is increased up to fivefold compared to the analogous junction based on n-alkanethiolate SAMs on gold. Experiments with Raman spectroscopy and field-effect transistor analysis indicate that such enhancements benefit from the creation of new in-gap states and electron doping through noncovalent interaction between the amine anchor and the SLG electrode, which leads to a reduced energy offset between the Fermi level and the transport channel. This work demonstrates that control of interfacial bonding nature in molecular junctions improves the Seebeck effect in saturated molecules

 

 

박소현1.jpg

 

 

https://onlinelibrary.wiley.com/doi/10.1002/adma.202103177

 

박소현2.png


Articles

1 2 3 4 5 6 7 8

Designed by sketchbooks.co.kr / sketchbook5 board skin

나눔글꼴 설치 안내


이 PC에는 나눔글꼴이 설치되어 있지 않습니다.

이 사이트를 나눔글꼴로 보기 위해서는
나눔글꼴을 설치해야 합니다.

설치 Cancel

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5

Sketchbook5, 스케치북5