author | Heejin Kim, Kwangyeol Lee |
---|---|
Homepage | http://nanolab.korea.ac.kr/ |
journal | Small Methods |
Alloy structures with high catalytic surface areas and tunable surface energies can lead to high catalytic selectivity and activities. Herein, the synthesis of sponge-like Pd3Pb multiframes (Pd3Pb MFs) is reported by using the thermodynamically driven phase segregation, which exhibit high selectivity (93%) for the conversion of furfural to furfuryl alcohol (FOL) under mild conditions. The excellent catalytic performance of the Pd3Pb MF catalysts is attributed to the high surface area and optimized surface energy of the catalyst, which is associated with the introduction of Pb to Pd. Density functional theory calculations show that the binding energy of FOL to the surface energy-tuned Pd3Pb MF is sufficiently lowered to prevent side reactions such as over-hydrogenation of FOL.
https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.202100400
« Prev Mitochondria-targeted nanotheranostic: Harnessing single-lase...
Mitochondria-targeted nanotheranostic: Harnessing single-lase... 2023.05.04by webmaster2 〈Deep Learning Optical Spectroscopy Based on Experimental Data... Next »
Deep Learning Optical Spectroscopy Based on Experimental Data... 2023.05.04by webmaster2 〉Designed by sketchbooks.co.kr / sketchbook5 board skin