author | Kwangyeol Lee |
---|---|
Homepage | http://nanolab.korea.ac.kr/ |
journal | Nano energy, 2017, Accepted Manuscript (https://doi.org/10.1016/j.nanoen.2017.10.033) |
Mixed metal alloy nanoframeworks have shown a great promise as electrocatalysts in water electrolyzers and fuel cells. Although a limited number of mixed metal alloy nanoframeworks have been synthesized through phase segregation of alloy phases and removal of a component, there remains a strong need for a straightforward and facile synthesis route to this important nanostructure. A wide avenue for nanoframework structures can be opened with a fail-proof method for edge-coating shape-controlled template nanoparticles. Herein, we demonstrate that lanthanide metal chlorides can selectively passivate facets of a Ni nanotemplate, leaving the edges for the growth of a secondary metal (M= Ir, Pt). The edge-deposited metal can be further in situ mixed with the underlying Ni phase to afford rhombic dodecahedral nanoframes of binary alloy phases, namely, IrNi (IrNi-RF) and PtNi (PtNi-RF). IrNi-RF showed excellent electrocatalytic activity for the oxygen evolution reaction (OER) in an acidic electrolyte, requiring and overpotential of only 313.6 mV at 10 mA cm-2. Furthermore, even after 5000 potential cycles in the OER, IrNi-RF underwent little performance loss with an overpotential of 329.3 mV at 10 mA cm-2, demonstrating excellent catalytic stability. The presence of highly active grain boundaries, agglomeration-free frame structures, as well as the presence of IrNi/IrOx interface might be responsible for the excellent electrocatalytic activity and stability.
Synthesis of MNi (M = Ir or Pt) nanoframe via facet-passivation agents and its excellent electrocatalytic activity and durability to oxygen evolution reaction in acidic electrolyte.
http://www.sciencedirect.com/science/article/pii/S2211285517306377
« Prev Single Component Organic Solar Cells Based on Oligothiophene-...
Single Component Organic Solar Cells Based on Oligothiophene-... 2017.10.23by Manager 〈Radially Phase Segregated PtCu@PtCuNi Dendrite@Frame Nanocata... Next »
Radially Phase Segregated PtCu@PtCuNi Dendrite@Frame Nanocata... 2017.10.13by Manager 〉Designed by sketchbooks.co.kr / sketchbook5 board skin